Neural Style Transfer

Outline

- VGGNet
- Neural Style Transfer
- A pytorch demo

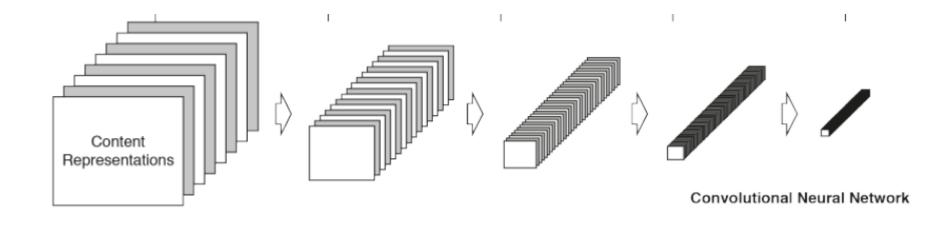
4			onfiguration	D	L L
A	A-LRN	B	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224 \times 2			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
	1	max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
	•	max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
		FC-	4096		
		FC-	1000		
			-max		

5 five groups of conv

Neural Style transfer

Content

Content



 $\begin{array}{ll} N_l \colon \mbox{ \ I distinct filters in l layer} \\ M_l \colon \mbox{ size of feature maps i.e. the height} \\ \mbox{ times the width of the feature map} \\ F^l \colon \mbox{ convolution response where } F^l_{ij} \mbox{ is the} \\ \mbox{ activation of the i^{th} filter at position j \\ \mbox{ in layer } l \ \left(F^l \in \mathcal{R}^{N_l \times M_l}\right) \end{array}$

Content

Loss

Let \vec{p} and \vec{x} be the original image and the image that is generated and P^l and F^l their respective feature representation in layer l.

We then define the squared-error loss between two feature representations

$$\mathcal{L}_{content}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l \right)^2$$

The derivative of this loss with respect to the activations in layer l equals

$$\frac{\partial \mathcal{L}_{content}}{\partial F_{ij}^l} = \begin{cases} \left(F^l - P^l\right)_{ij} & \text{if } F_{ij}^l > 0\\ 0 & \text{if } F_{ij}^l < 0 \end{cases}.$$

The gradient with respect to the image \vec{x} can be computed using standard BP. Thus we can change the initially random image \vec{x} until it generates the same response in a certain layer of the CNN as the original image \vec{p} .

Style Loss

To obtain a representation of the *style* of an input image, we use a feature space to capture texture information.

These feature correlations are given by the Gram matrix $G^{l} \in \mathcal{R}^{N_{l} \times N_{l}}$, where G_{ij}^{l} is the inner product between the vectorized feature map i and j in layer l:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l}$$

We minimize the mean-squared distance between the entries of the Gram matrix A^l from the original image and the Gram matrix G^l of the image to be generated

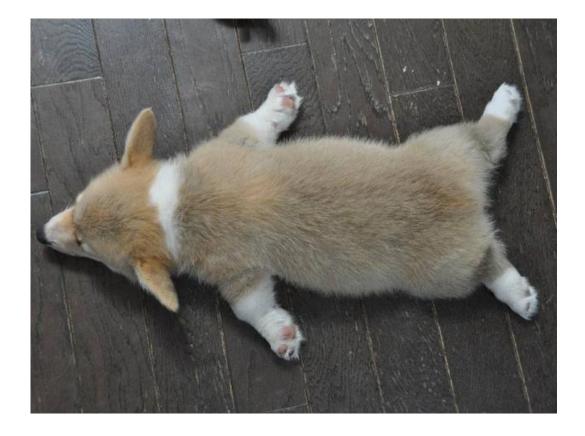
$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} \left(G_{ij}^{l} - A_{ij}^{l}\right)^{2}$$

And the total loss is

$$\mathcal{L}_{style}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l$$

Let \vec{p} be the photograph and \vec{a} be the artwork. The loss function we minimize is

$$\mathcal{L}_{total}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{content}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{style}(\vec{a}, \vec{x})$$



Refernces

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556*(2014).

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." *arXiv preprint arXiv:1508.06576* (2015).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." *Nature* 521.7553 (2015): 436-444.